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Abstract
A theoretical model of two-phase crystal–glass composite materials is suggested
which is based on the disclination description of glassy structures. In the
framework of the model, the crystal–glass composite is described as a solid
that contains nanoscale configurations of disclination–dislocation loops in the
glassy phase. Specific defects at the crystal–glass interface are defined and
theoretically described which are misfit disclinations generated as extensions
of parent wedge disclinations present in the glassy phase. In doing so, the
defect ensemble in the crystal–glass composite is characterized by nanoscale
inhomogeneities in both the defect density and stress in the vicinity of the
crystal–glass interface. The formulae for the stress fields created by ensembles
of the disclination–dislocation loops in crystal–glass composites are derived.
With these formulae, the energy of the crystal–glass interface is estimated.

1. Introduction

Crystal–glass composite materials (bulk composites consisting of crystallites embedded in
an amorphous matrix, bulk composites consisting of amorphous particles embedded in a
crystalline matrix, multilayer coatings, nanocomposite coatings consisting of nanocrystallites
divided by amorphous intergranular layers, amorphous thin films on crystalline substrates,
crystalline thin films on amorphous substrates, etc) represent the subject of intense experimental
and theoretical research efforts motivated by a wide range of their applications in high
technologies; see, e.g., [1–19]. Physical and mechanical properties of these composite
materials essentially depend on both the structure and behavior of crystal–glass interfaces.
In particular, the role of crystal–glass interfaces is crucial in physical processes occurring in
nanocrystal–glass composite materials [15, 16] where the volume fraction of the interfacial
phase is very large. The aforesaid causes a high interest in understanding and a theoretical
description of the specific structural and behavioral peculiarities of crystal–glass interfaces.
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One of the most important characteristics of a crystal–glass interface is its energy. For
instance, the interface energy serves as a key parameter regulating both crystal-to-glass and
glass-to-crystal transformations [1–3, 17–19]. Benedictus et al [20] have estimated the energy
of crystal–glass interfaces in the framework of the thermodynamic approach, which, however,
does not take into account the misfit (geometric mismatch inducing distortions) between the
amorphous and crystalline phases. At the same time, the misfit accumulated at interphase
boundaries is known to definitely influence their properties, even if both the phases adjacent to
the interphase boundary are crystalline ones with similar structures; see, e.g., [21–26]. Since
the very different crystalline and amorphous phases are matched at crystal–glass interfaces, it
is natural to expect that their specific features are a high misfit between the shared phases and,
as a corollary, the existence of high-density ensembles of misfit defects (defects associated
with misfit) at such interfaces. In the letter [27] the representations on misfit disclinations as
defects associated with orientational misfit between the adjacent amorphous and crystalline
phases have been introduced and briefly discussed. The main aim of this paper is to elaborate
a detailed theoretical description of misfit defect structures in crystal–glass composites and
estimate the specific energy of the interfaces between the crystalline and amorphous phases with
the same chemical composition. In doing so, the focuses are placed on the misfit disclinations
briefly discussed earlier [27] and nanoscale configurations of disclination–dislocation loops at
crystal–glass interfaces.

2. Structural geometry of crystal–glass interfaces. Misfit disclinations

Let us consider crystal–glass interfaces between the amorphous and crystalline phases. For
definiteness, in our analysis of crystal–glass interfaces,hereinafter we restrict our consideration
to the situation with both the crystal and the glass having the same topology of facets as most of
their elementary units (atomic clusters). This allows adjacent crystalline and glassy surfaces
to be partly matched in a coherent way at a crystal–glass interface. Such interfaces, at the
same time, contain topological misfit defects that locally (at defect cores) violate the coherent
matching. The interfaces between metallic glasses and crystals with bcc and fcc lattices serve
as a characteristic example, because the facets of elementary units—tetrahedral and octahedral
pyramids—of both metallic glasses and bcc (fcc) crystals have the topology of triangles and
rectangles that are facets of these pyramids (figure 1); see, e.g. [28]. In the following, for
definiteness, we will focus our consideration on metallic glass–crystal interfaces and just
briefly discuss the case of covalent glass–crystal interfaces.

In general, the common features of covalent and metallic glasses are the absence of a long-
range translational order, and the existence of a short-range orientational order, intermediate-
range homogeneity and frozen-in local distortions in the glassy structure. These features
and the properties exhibited by glasses are effectively described within the framework of the
disclination models (e.g., [29–32]), that treat glasses as solids with disorderedly distributed
disclination defects destroying the long-range orientational order and being responsible for the
local distortions in glasses. Such disclinations commonly form low-energy configurations with
screened stress fields [29–32]; this reflects the intermediate-range homogeneity inherent to a
(disclinated) glass. In the case of metallic glasses described as disclinated solids [30], there
are two types of disclination: continuously distributed disclinations characterized by small
negative values of disclination strength and isolated disclinations characterized by large positive
values of disclination strength. The continuously distributed disclinations of small negative
strength are associated with the spontaneous continuous curvature of the glassy structures,
which is due to short range interactions [30]. The isolated disclinations of large positive strength
play the role of defects that compensate for the spontaneous continuous curvature associated
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Figure 1. Tetrahedral and octahedral pyramids, which serve as structural units of both metallic
bcc (fcc) crystals and glasses characterized by long- and short-range order in their arrangement,
respectively. Facets of tetrahedra and octahedral pyramids are triangles and rectangles. These
facets are matched at crystal–glass interfaces.

with small-strength disclinations. In terms of curvature, large-strength disclinations provide
the flattening of the disclinated glassy structures to be embedded in the real three-dimensional
space [30]. The disclination approach is also effective in a description of covalent glasses as
solids with disclinations of both positive and negative strength. For instance, disclinations
are defined as the line defects threading the internal regions of the five- and seven-sided rings
of atoms in the glassy phase of covalent structures whose crystal phase contains the six-sided
rings of atoms [30]. In doing so, disclinations serve as carriers of internal curvature in covalent
glasses, as with metallic glasses [30, 31].

Also, the disclination models of the glassy (amorphous) structures are effective in a
theoretical description of stress fields and plastic deformation processes in such structures [30–
32]. With this taken into account, we will use the disclination approach in our further analysis
of misfit defects and stresses generated at crystal–glass interfaces.

Let us consider a crystal–glass interface resulting from the matching of a crystal and a
glass, being a solid with disclinations threading its bulk and entering its surface (figure 2(a)).
According to the disclination charge (Frank pseudo-vector) conservation law [30, 31], no
disclination can terminate in the bulk of a solid; disclinations either terminate at a free surface
or form loop configurations in the bulk of a solid. As a corollary, after the crystalline and glassy
surfaces have been matched, the disclinations previously (before matching) terminated at the
pre-existent free surface of the glass have to be transformed and extended in the new crystal–
glass composite. More precisely, in order to satisfy the disclination charge conservation law
in the new crystal–glass composite, the disclinations have to be extended to the crystal–glass
interface [27] (figure 2(b)).

Notice that misfit disclinations at crystal–glass interfaces (figure 2(b)) are associated
with orientational mismatch between the glassy phase specified by a short-range orientational
order and the adjacent crystalline phase characterized by a long-range orientational order.
More precisely, elementary atomic clusters at the contact surfaces of the adjacent glassy
and crystalline phases are misoriented relative to each other, when they match and form a
crystal–glass interface. In doing so, the local misorientation between the matching atomic
clusters is spatially inhomogeneous,because the clusters at the contact surface of the crystalline
phase (having a long-range orientational order) are oriented identically, while orientation of
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Figure 2. Formation of a crystal–glass composite. (a) A crystal (top layer) and a glass (bottom
layer) with parent wedge disclinations (solid lines terminated by full circles on surfaces of the
bottom layer) before their matching. (b) After the crystal and the glass have been matched, parent
disclinations extend from the glass to the crystal–glass interface at which misfit twist disclinations
(dotted lines) are formed.

the clusters at the contact surface of the amorphous phase (characterized by a short-range
orientational order) is spatially inhomogeneous. In the framework of our approach, misfit
disclinations as rotational defects inducing spatially inhomogeneous stress fields play the role
of carriers of the spatially inhomogeneous orientational mismatch at crystal–glass interfaces.
In general, similar misfit defect structures—misfit disclinations at low- and high-angle grain
boundaries—are formed also in polycrystalline and nanocrystalline films deposited onto single-
crystalline substrates; see experimental data [33, 34] and theoretical models [24, 35]. In this
situation, misfit disclinations are associated with orientational mismatch between misoriented
grains of a film and a single-crystalline substrate. In addition to these disclinations located
at interphase boundaries, there are disclinations located at grain boundaries in single-phase
polycrystalline and nanocrystalline materials. Such grain boundary disclinations are treated as
defects providing misorientation (in other terms, orientational misfit) between adjacent grains
of the same crystal phase [31, 36–38].

In parallel with the orientational misfit between the adjacent glassy and crystalline phases,
there exists a dilatation misfit related to the difference between the characteristic interatomic
distances in the adjacent glassy and crystalline phases. The dilatation misfit at crystal–glass
interfaces is similar to that at conventional crystal–crystal interfaces. Therefore, it is effectively
described in terms of the dilatation misfit parameter and associated dilatation misfit stresses
and misfit dislocations; see, e.g., reviews [21–23]. Since a description of the dilatation misfit is
a standard procedure, here and in the following we will focus our consideration on a description
of only the orientational misfit and associated misfit disclinations at crystal–glass interfaces.

Thus, the matching of the glassy and crystalline phases results in the formation of the
special misfit defects at the crystal–glass interface. By definition, such defects are located
in the interface plane and originate at the end points of the wedge disclinations entering the
interface (figure 2(b)). As extensions of parent disclinations, the special misfit defects are misfit
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disclinations characterized by the same Frank pseudo-vectors ω as their parent disclinations.
However, the lines of the special misfit defects lying in the interface plane are bent relative to
the lines of their parent disclinations and, as a corollary, their characteristic vectors ω. This
causes the types of misfit disclinations to be different from the types of parent disclinations.
In particular, wedge disclinations in the glassy phase are extended to form misfit disclinations
of the twist type at the crystal–glass interface.

In the framework of the suggested approach, the crystal–glass interfaces are effectively
represented as semi-coherent interfaces with coherent fragments and high-density ensembles
of misfit disclinations. This representation will allow us to describe theoretically the
characteristics—in particular, elastic energy density—of crystal–glass interfaces as those of
ensembles of misfit defects (see the next sections). On the other hand, the crystal–glass
interfaces represented as semi-coherent interfaces contain coherent fragments with one-to-one
atomic matching. In the case discussed, such interfaces have to be sensitive to crystallographic
peculiarities of the adjacent crystalline phase. In this context, the experimental observations
of facetted crystal–glass interfaces [10, 11] and pronounced textures in polycrystalline films
on glassy substrates [12] support the theoretical representations elaborated here.

3. Disclination–dislocation ensemble in crystal–glass composite. Model

In order to quantitatively estimate the specific elastic energy of a crystal–glass interface
(figure 2(b)), we need to concretize the parameters of the defect ensemble in a crystal–glass
composite. In doing so, we consider a model two-phase crystal–glass composite under the
following simplifying assumptions:

(i) Both the phases are elastically isotropic solids with the same values of the shear modulus
µ and the same values of the Poisson ratio ν.

(ii) The amorphous phase contains wedge disclinations with straight lines normal to the
crystal–glass interface (figure 3).

(iii) In spirit of the disclination models [29–32], the amorphous metallic phase is assumed to
contain the two basic types of disclinations: large- and small-strength ones (figure 3).
Each large-strength disclination is characterized by a negative strength ω0 being around
−0.5 rad. (The strength of disclination is equal here to the Frank pseudo-vector modulus
if the disclination is associated with inserting an elastic wedge into the material and has the
value opposite to the Frank pseudo-vector modulus if the disclination is associated with
removing such a wedge.) The line of large-strength disclination changes the topology
of elementary units (atomic clusters) adjacent to the line, compared to that of clusters
composing the surrounding amorphous metallic material (for details, see [31, 32]). Small-
strength disclinations are characterized by infinitesimal values of positive strength dω.
Their cores do not influence the topology of atomic clusters of glasses. Each large-
strength (ω0) disclination is surrounded by continuously and homogeneously distributed
small-strength (dω) disclinations which provide the complete screening of stress fields
generated by the large-strength disclination. In doing so, small-strength disclinations are
continuously distributed in the cylindrical region with nanoscale radius Rs and the centre
line coinciding with the line of the large-strength disclination (figure 3). The sum strength
of the negative disclination ω0 and positive disclinations dω is supposed to equal to zero.

(iv) The large-strength disclinations are distributed in a tentatively homogeneous way within
the amorphous phase. Their mean density is around R−2

s . That is, the disclination
ensemble of the glassy phase adjacent to the crystal–glass interface can be divided into
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Figure 3. Large-strength ω0-disclination (solid segment) of wedge type surrounded by
continuously distributed dω-disclinations of wedge type in amorphous film on crystalline substrate.
Some of the dω-disclinations are shown as straight segments. ω0- and dω-disclinations are joined
by twist disclination (dotted) segments in the crystal–glass interface plane. Wedge and twist
disclinations form semiloops. Rs is the radius of the cylindrical region where the complete mutual
screening of stress fields of ω0- and dω-disclinations occurs.

disclination configurations with screened stress fields within nanoscale cylindrical regions
which occupy all the glassy phase and do not overlap essentially.

The key structural and behavioral features of crystal–glass composites, reflected in
their disclination description, are not oversimplified by using assumptions (i)–(iv). At the
same time, these assumptions technically simplify our following analysis of crystal–glass
interfaces. Notice that model assumption (iii) is concerned with the metallic glassy phase where
continuously distributed disclinations of small negative strength surround isolated disclinations
of large positive strength. Our consideration can be generalized to the case of other disclinated
solids. For instance, in order to describe the covalent glass–crystal interfaces, we should re-
formulate assumption (iii) for the covalent glassy phase, taking into account that it contains
both positive and negative large-strength isolated disclinations [30].

Let us consider the peculiarities of misfit disclination structures at the crystal–glass
interface, with model assumptions (i)–(iv) taken into account. In the situation discussed,
the wedge disclinations of the metallic glassy phase terminate at the crystal–glass interface
where they transform into twist disclinations (figure 3). The twist disclinations located at the
crystal–glass interface join termination points of wedge disclinations in accordance with the
disclination charge (Frank pseudo-vector) conservation law (figure 3). In the framework of
our model, the disclination ensemble of the glassy phase adjacent to the crystal–glass interface
can be divided into disclination configurations with screened stress fields within cylindrical
regions (figure 3). Within each such region a large negative-strength (ω0) wedge disclination
is surrounded by continuously distributed small positive-strength (dω) wedge disclinations.

For the convenience of the following calculations, we treat the disclination with the large
negative strength ω0 as an ensemble of small-negative-strength disclinations, each having the
strength −dω. All the small-negative-strength disclinations have the lines coinciding with the
line of the large-strength disclination. Their sum strength is equal to ω0. In this context, the
sum strength of negative (−dω) and positive (dω) disclinations with small strengths is zero, and
the distribution density of disclinations having the strength −dω equals to that of disclinations
having the strength dω. Therefore, the negative disclination with the large strength ω0 and the
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-dω dωr0 r0

Figure 4. Two-axis dipole of disclinations with the strengths dω and −dω (a) is equivalent to
a one-axis disclination dipole and a dislocation with the Burgers vector db, whose line coincides
with that of the of the disclination with the strength dω.

(b)(a)

(c) (d)

(e)

-dω dω dω
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Figure 5. Transformations of defect configurations. Transformation of (a) one-axis disclination
dipole into (b) disclination semiloop. Transformation of (c) dislocation dipole into (d) dislocation
semiloop being equivalent to (e) the superposition of two dislocation semiloops.

ensemble of positive disclinations having the strength dω can be represented as an ensemble of
dipoles of disclinations dω and −dω. The disclinations dω stand off the axis of the cylindrical
region occupied by the disclinations while all the negative disclinations −dω are located at the
cylinder axis.

Any dipole of disclinations dω and −dω has two rotation axes. According to the theory
of disclinations [31, 39], any dipole of disclinations dω and −dω with two rotation axes (that
coincide with the disclination lines) can be presented as the superposition of the two following
defects: (i) disclination dipole with one rotation axis that is coincident with the cylinder centre
line and (ii) dislocation whose line coincides with the line of the disclination dω, and the
Burgers vector db follows as db = dω × r0. Here dω denotes the disclination Frank pseudo-
vector, and r0 is the vector that characterizes the displacement of the disclination rotation axis
(from one wedge disclination to the other) (figure 4). Similarly to the disclinations, the lines
of dislocations are homogeneously distributed within the cylindrical region of radius Rs.

In accordance with the Frank conservation law, the disclinations that comprise one-axis
dipoles (figure 5(a)) are closed to form disclination semiloops (figure 5(b)) by twist disclination
segments of strength dω (located at the crystal–glass interface). According to the conservation
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law of the Burgers vector, the dislocation lines that occupy the cylindrical region of radius Rs

also have to be closed into semiloops. To join the dislocation lines, consider two dislocations
that are characterized by opposite vectors r0 and −r0 (and so have opposite Burgers vectors
dω × r0 and −dω × r0) (figure 5(c)). These dislocations may be closed into a semiloop
(figure 5(d)) by an edge dislocation segment (located at the crystal–glass interface). In
turn, the dislocation semiloop thus formed may be presented as the superposition of two
dislocation semiloops shown in figure 5(e). Evidently, the positions and directions of the lines
of dislocation semiloops shown in figure 5(e) coincide with those of the disclination semiloops
characterized by the vectors r0 and −r0 (see figure 5(b)). Therefore, the combination of two
semiloops (disclination and dislocation ones) with the same lines may be considered as one
disclination–dislocation semiloop, or Volterra dislocation, characterized by the Frank pseudo-
vector dω and the Burgers vector db = dω × r0.

To summarize, in the framework of our model, the defect configuration within the
cylindrical region in the glassy phase adjacent to the crystal–glass interface can be effectively
represented as the superposition of �-like disclination–dislocation semiloops. Each �-like
semiloop consists of (a) a segment located at the cylinder centre line normal to the crystal–
glass interface; (b) a segment normal to the crystal–glass interface and standing off the cylinder
axis; and (c) a segment of length r0, which is located at the crystal–glass interface and joins
segments (a) and (b).

4. Stress fields of disclination–dislocation loops in crystal–glass composite

In order to estimate the elastic energy of a crystal–glass interface, we need to calculate
the stress field of the disclination–dislocation ensemble in a composite solid containing the
interface. The stress fields created by the ensemble of dislocation–disclination semiloops
continuously distributed over a cylindrical region is effectively calculated using the method
based on representations of the ensemble of the defect semiloops as a cylindrical inclusion
with a certain plastic distortion (figure 6); for details, see the appendix. With the results of
our calculations presented in the appendix, we find the stress tensor components written in the
cylindrical coordinates (r , ϕ, z) (see figure 6) to be as follows: σ jl = σ∞

jl �(z̃) + σ ′
jl sgn z̃,

where

σ∞
rr = − Dω0

4

{
(r̃2 − 4 ln r̃)�(1 − r̃) +

1

r̃2
�(r̃ − 1)

}
, (1a)

σ∞
ϕϕ = − Dω0

4

{
(3r̃2 − 4 ln r̃ − 4)�(1 − r̃)− 1

r̃2
�(r̃ − 1)

}
, (1b)

σ∞
zz = −νDω0(r̃

2 − 2 ln r̃ − 1)�(1 − r̃), (1c)

σ∞
rϕ = σ∞

rz = σ∞
zϕ = 0, (1d)

σ ′
{ rr
ϕϕ

} = Dω0

24

∫ ∞

0
e−k|z̃|k dk {[(k|z̃| − 4(1 − ν))J0(kr̃)∓ (k|z̃| − 2)J2(kr̃)] f1(k)

+ [(k|z̃| − 2)J0(kr̃)∓ (k|z̃| − 2(1 − 2ν))J2(kr̃)] f2(k)}, (2a)

σ ′
zz = − Dω0

12

∫ ∞

0
J0(kr̃)e−k|z̃|k dk {k|z̃|[ f1(k) + f2(k)] − 2ν[ f1(k)− f2(k)]}, (2b)

σ ′
rz = − Dω0

12

∫ ∞

0
J1(kr̃)e−k|z̃|k dk {k|z̃|[ f1(k) + f2(k)] − 2(1 − ν) f1(k)− (1 − 2ν) f2(k)},

(2c)

σ ′
rϕ = σ ′

zϕ = 0, (2d)
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x3, z
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ϕ

Figure 6. Cylindrical inclusion that is equivalent to an ensemble of
dislocation–disclination semiloops and its associated coordinate systems.

r̃ = r/Rs, z̃ = z/Rs, and D = µ/[2π(1 − ν)]. Here �(t) is the Heaviside function equal
to 1, if t > 0, and to 0, if t < 0, Jn(kr̃) are the Bessel functions of the mth order, and
the functions f1(k) and f2(k) are given by formulae (A.21) and (A.22). The stress tensor
components σ jl given by formulae (1) and (2) satisfy the equilibrium equations: σ jl,l = 0.
Also, from formulae (1) and (2) it follows that σ∞

jl = limz→+∞ σ jl . In these circumstances,
the stresses σ∞

jl represent the stresses created in an infinite amorphous solid by the ensemble
of two-axis disclination dipoles continuously distributed over a cylindrical region with the
radius Rs. The stresses σ ′

jl are the stresses occurring owing to the presence of the crystal–glass
boundary. They exist only in the vicinity of this interphase boundary and quickly decay with
increasing distance from this boundary (for an illustration, see figure 7). Due to the stresses
σ ′

j l , the elastic energy density (per unit volume) in a local region adjacent to the boundary
and thereby the total elastic energy of a crystal–glass composite increase. Since the stresses
σ ′

j l are associated with the existence of the crystal–glass boundary, their contribution to the
total energy of a crystal–glass composite solid is naturally treated as the elastic energy of the
boundary. This energy will be calculated in the next section.

5. Elastic energy of crystal–glass interphase boundary

Let us consider the elastic energy W accumulated in a crystal–glass composite solid owing to
the presence of dislocation–disclination semiloops continuously distributed over a cylindrical
region with radius Rs. Following the general approach [40], the energy W can be written in
the following form:

W = − 1
2

∫
Vcg

σ jlβ
∗
l j dV , (3)

where Vcg is the volume of the crystal–glass composite and β∗
l j is the total plastic distortion

of the ensemble of dislocation–disclination semiloops. In the cylindrical coordinate system
(r, ϕ, z), β∗

l j has only one non-zero component β∗
ϕϕ , given by formula (A.11). Since

σ j l = σ∞
jl �(z̃) + σ ′

jl sgn z̃ (where z̃ > 0 in the amorphous phase, and z̃ < 0 in the crystal
phase) and β∗

l j = 0 at z̃ < 0 (in the crystal phase), formula (3) can be represented as:
W = W0 + Wi , where

W0 = − 1
2

∫
Vg

σ∞
jl β

∗
l j dV , Wi = − 1

2

∫
Vg

σ ′
jlβ

∗
l j dV , (4)
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Figure 7. Dependences of the stresses σ ′
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(b) on the dimensionless distance z/Rs from the crystal–
glass interface, for r/Rs = 0, 0.3, 0.5, 1 (curves 1, 2, 3
and 4, respectively).

and Vg is the volume occupied by the amorphous phase. In doing so, W0 is the elastic energy
of the ensemble of two-axis disclination dipoles (distributed over the cylindrical region with
the radius Rs) in the volume Vg of infinite amorphous material. Wi plays the role of the
additional energy related to the transformation of the two-axis disclination dipoles into the
dislocation–disclination semiloops at the crystal–glass boundary. Since the tensor β∗

l j in the
cylindrical coordinate system has the only one non-zero componentβ∗

ϕϕ , the second expression
in formula (4) can be represented as

Wi = − 1
2

∫ ∞

0
r dr

∫ 2π

0
dϕ

∫ ∞

0
dz σ ′

ϕϕβ
∗
ϕϕ. (5)

Substitution of expressions (A.11) and (2a) for β∗
ϕϕ and σ ′

ϕϕ into formula (5) and subsequent
integration yield

Wi = Dω2
0 R3

s

144
{(1 + 4ν)A + 2B + (1 − 4ν)C} , (6)

where

A =
∫ ∞

0
f 2
1 (k) dk ≈ 2.76, B =

∫ ∞

0
f1(k) f2(k) dk ≈ 0.72,

C =
∫ ∞

0
f 2
2 (k) dk ≈ 0.44, (7)

and the functions f1(k) and f2(k) are given by (A.20) and (A.21), as above.
As noted above, the energy Wi is treated as the energy of the crystal–glass boundary,

related to the presence of dislocation–disclination semiloops continuously distributed over
one cylindrical region with the radius Rs. In the framework of our model (see section 3),
such cylindrical regions with dislocation–disclination semiloop ensembles occupy all the
amorphous phase (except for some small areas between the cylindrical regions, which are
free from defects and assumed to be incoherent), and their stress fields do not interact. In this
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model approximation, the energy density γi of the interphase crystal–glass boundary per its
unit area is defined as the ratio of Wi to the cylindrical section area with the radius Rs, that is,
γi = Wi/(πR2

s ). With (6), we find

γi = Dω2
0 Rs

144π
{(1 + 4ν)A + 2B + (1 − 4ν)C}. (8)

For polyatomic metallic glasses (amorphous metallic alloys), we have [31, 32] ω ≈ −0.5
and Rs ≈ 5a0 (where a0 is the mean interatomic distance in the glassy phase, and Rs is
treated to be tentatively equal to the characteristic length scale of structural inhomogeneities
in amorphous metallic alloys [41]). In this case, for ν = 0.3, from formula (8), we find an
estimate of γi/(µa0) ≈ 0.47 × 10−2. For monatomic metallic glasses (amorphous metals),
ω0 = −2 arcsin(1/

√
3) ≈ −70.5◦, Rs ≈ 5a0 [31, 32]. In this case, for ν = 0.3, from

formula (8) we find estimate of γi/(µa0) ≈ 2.82 × 10−2. The above estimated values
of the energy density γi that characterizes the crystal–glass boundary are close to values
of the chemical energy density that characterize crystal–crystal interphase boundaries and
free surfaces of crystalline solids. For instance, from data [42, 43] on materials parameters
for Cu and Ni, we have the following estimates: for Cu γ /(µa0) = (11–18) × 10−2,
γb/(µa0) = (7–10) × 10−2, for Ni γ /(µa0) = (8–14) × 10−2, γb/(µa0) = (7–9) × 10−2.
Here γ and γb denote the surface and grain boundary energies, respectively. Thus, values of
γ and γb are of the same order as the elastic energy density γi of a crystal–glass boundary.

In the situation where the crystal and amorphous phases in a crystal–glass composite solid
have the same chemical composition, the total energy density of the crystal–glass interface
is equal to the elastic energy density γi. If the adjacent crystal and amorphous phases have
different chemical compositions A and B, respectively, the total energy of the interface between
the crystal A and glass B is represented in the first approximation as the sum γi + γAB, where
γAB is the chemical energy density that characterizes the interphase boundary between the
crystals A and B.

6. Concluding remarks

Here we have suggested a first approximation model that describes misfit defects at crystal–
glass interfaces in composite solids. In the framework of the suggested model, crystal–glass
interfaces are effectively described as semi-coherent interfaces with high-density ensembles
of misfit disclinations. Such disclinations are associated with orientational misfit between the
adjacent glassy phase (characterized by a short-range orientational order) and the crystalline
phase (characterized by a long-range orientational order). The misfit stresses in amorphous
films are treated as generated by crystal–glass interfaces due to the existence of misfit
disclinations and the difference between the mean interatomic distance of the amorphous phase
and the lattice parameter of the crystalline phase. With the model representations elaborated
in this paper, we have calculated the characteristics (in particular, the elastic energy density) of
crystal–glass interfaces. Following our quantitative examinations, the elastic energy density of
the crystal–glass interfaces can be rather high and is highly sensitive to the characteristics (the
disclination strengthω0, the screening length Rs of disclination stress fields) of the disclination
ensemble in the film.

The quantitative results obtained in this paper are approximate. However, they can be used
as a basis for further, more detailed investigations of crystal–glass composites. In particular,
the calculated values of the elastic energy density of crystal–glass interfaces can be used as
an input in a theoretical analysis of solid state amorphizing transformations under thermal,
irradiation and mechanical treatments as well as adhesion failure processes in amorphous
films on crystalline substrates. This will be the subject of our further investigations.
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Appendix

In this appendix, we calculate the stress field of the ensemble of dislocation–disclination
semiloops (figure 3) continuously distributed over a semi-infinite cylindrical region. In the
cylindrical coordinate system shown in figure 6, this region occupies the domain (r < Rs,
z > 0). To calculate the stress field of the dislocation–disclination ensemble, we present it
as a cylindrical inclusion whose plastic distortion is equal to the total plastic distortion of the
ensemble of the dislocation–disclination semiloops.

In spirit of the general approach [44], the total distortion (gradient of the displacement
field) ui, j created by the defect configuration under consideration (figure 3) can be represented
as the sum of elastic distortion β j i and plastic distortion β∗

j i :

ui, j = β j i + β∗
j i . (A.1)

The elastic distortion tensor β j i is in the following relationship [40] with the tensor of elastic
stresses σi j :

σi j = Ci jklβlk , (A.2)

where Ci jkl is the tensor of elastic moduli.
Let us consider a dislocation–disclination (semi)loop which represents a superposition

of dislocation (semi)loop with the Burgers vector b and disclination (semi)loop with the
Frank pseudo-vector ω. The dislocation–disclination (semi)loop or, in other terms, Volterra
dislocation can be treated as the defect resulting from the following imaginary operation.
A solid is cut along surface S, in which case two free surfaces S+ and S− are formed
at the cut surface S. The free surface S+ moves (translates and rotates) by the vector
u(x) = b + ω × (x − x0) relative to the free surface S−, where x = (x1, x2, x3) is an
arbitrary three-dimensional vector, and x0 is the vector that describes both the spatial position
and orientation of the rotation axis. The Volterra dislocation line and the surfaces S+ and S−
are in the relationship given by the following rule: go around a linking circuit (the Burgers or
Frank circuit) in the direction of rotation of a right-handed screw advancing along the direction
of the dislocation. Then the surface S+ is designated as the surface at which the end point of
the Burgers (Frank) circuit is located.

The plastic distortion β∗l
i j of the dislocation–disclination (semi)loop under consideration

is given as [40]

β∗l
i j = δS(S)[−b j − e j pqωp(xq − x0

q)]ni , (A.3)

where δS(S) = ∫
S δ(x − x′) dS′, δ(x − x′) is the three-dimensional delta-function, ni is the

vector normal to S and directed from S+ to S−, e j pq is the permutation tensor.
Now let us consider a dislocation–disclination semiloop consisting of disclination and

dislocation semiloops characterized by an infinitesimal Frank pseudo-vector dω and the
Burgers vector db = dω×r0, respectively (figure A.1). For our consideration, let us introduce
the two Cartesian coordinate systems: (x1, x2, x3) and (x ′

1, x ′
2, x ′

3). The axes x3 and x ′
3 coincide,
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Figure A.1. Two Cartesian coordinate systems (x1, x2,
x3) and (x ′

1, x ′
2, x ′

3) characterize the spatial position of the
disclination–dislocation semiloop.

while the axes x ′
1 and x ′

2 result from the axes x1 and x2 respectively by their anticlockwise
rotation by ϕ′ in the plane 0x1x2. Also, the axis x ′

1 lies in the semiloop plane, and the direction
of the semiloop line is chosen as shown in figure A.1. In this situation, the Frank pseudo-vector
dω = dω ex′

3
of the defect semiloop is directed along the axis x ′

3, while the direction of its
Burgers vector is opposite to that of the axis x ′

2: db = −dω r0ex′
2
. The rotation axis that

characterizes the dislocation–disclination semiloop coincides with the axis x ′
3.

The plastic distortion dβ∗
i j of the defect semiloop under consideration can be calculated

using formula (A.3). In doing so, we find that the tensor dβ∗
i j in the coordinate system (x ′

1, x ′
2,

x ′
3) has the two following non-zero components:

dβ∗
2′2′ = dω δ(x ′

2)[�(r0 − x ′
1)−�(−x ′

1)]�(x
′
3)(x

′
1 − r0), (A.4)

dβ∗
2′1′ = −dω x ′

2δ(x
′
2)[�(r0 − x ′

1)−�(−x ′
1)]�(x

′
3). (A.5)

Here �(t) is the Heaviside function equal to 1, if t > 0, and to 0, if t < 0.
Let us introduce the cylindrical coordinates r , ϕ and z related to the coordinates x1, x2

and x3 by the following relationships: x1 = r cosϕ, x2 = r sin ϕ, x3 = z (see figure 6). Then
we have x ′

1 = r cos(ϕ − ϕ′), x ′
2 = r sin(ϕ − ϕ′). Using the latter relations, formulae (A.4)

and (A.5) and standard transformations of tensor components at rotations of the coordinate
system, the non-zero components of the tensor dβ∗

i j are written in the coordinate system (x1,
x2, x3) as follows:

dβ∗
11 = A(r, r0, ϕ − ϕ′)(r sin ϕ − r0 sin ϕ′) sin ϕ′, (A.6)

dβ∗
22 = A(r, r0, ϕ − ϕ′)(r cosϕ − r0 cosϕ′) cosϕ′, (A.7)

dβ∗
12 = A(r, r0, ϕ − ϕ′)(−r cosϕ + r0 cosϕ′) sin ϕ′, (A.8)

dβ∗
21 = A(r, r0, ϕ − ϕ′)(−r sin ϕ + r0 sin ϕ′) cosϕ′, (A.9)

where

A(r, r0, ϕ − ϕ′) = dω{�[r0 − r cos(ϕ − ϕ′)] −�[−r cos(ϕ − ϕ′)]}δ[r sin(ϕ − ϕ′)]�(z).
(A.10)

Now let us turn to analysis of continuous distributions of dislocation–disclination
semiloops existing in a crystal–glass composite. Let us consider the situation where one
of the segments of dislocation–disclination semiloops is located at line z = 0, and the
semiloops are continuously distributed over a cylinder with the radius Rs in the half-space
z � 0 occupied by the amorphous phase. The distribution of the semiloops is parametrized
by the coordinates r = r0 and ϕ = ϕ′ of their segments parallel to the axis z, and is
homogeneous within the cylinder. In this situation, the magnitude dω of the infinitesimal
disclination Frank pseudo-vector is given by the relationship dω = −[ω0/(πR2

s )]r0 dr0 dϕ′,
and the total distortion of the ensemble of the continuously distributed defect semiloops is
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β∗
i j = ∫

r<Rs
dβ∗

i j . This integral, with formulae (A.6)–(A.10), yields: β∗
11 = β∗

ϕϕ sin2 ϕ,
β22 = β∗

ϕϕ cos2 ϕ, β∗
12 = β∗

21 = −β∗
ϕϕ sin ϕ cosϕ, where

β∗
ϕϕ = ω0

6π

r̃3 − 3r̃ + 2

r̃
�(1 − r̃)�(z̃), (A.11)

r̃ = r/Rs, and z̃ = z/Rs. It is evident that β∗
ϕϕ is the sole non-zero component of the total

plastic distortion tensor β∗
i j in the cylindrical coordinate system (r , ϕ, z).

With the above expressions for the plastic distortion β∗
i j of the ensemble of continuously

distributed dislocation–disclination semiloops, let us calculate the stress field created by
this ensemble. Following the general approach [40], the plastic distortion β∗

i j induces the
displacement field given in its general form as

up(x) = 1

(2π)3

∫
Vk

ûp(k)eik·x dV ′
k, (A.12)

where

ûp(k) = −iklC jlmn β̂
∗
nm Ĝ pj . (A.13)

In formulae (A.12) and (A.13), i = √−1, ûp, β̂∗
nm and Ĝ pj are the Fourier transforms of

the plastic distortion tensor and Green tensor of the medium, respectively, dV ′
k is an elemental

volume in reciprocal (Fourier) space, x and k are the three-dimensional vectors in conventional
and reciprocal (Fourier) spaces, respectively, and k · x is their scalar product. Integration in
formula (A.12) is performed over the infinite volume Vk of the Fourier space.

In the case of an isotropic medium, we have [40]

C jlmn = λδ jlδmn + µ(δ jmδln + δ jnδlm), (A.14)

Ĝi j = (λ + 2µ)k2δi j − (λ + µ)ki k j

µ(λ + 2µ)k4
. (A.15)

Here λ = 2νµ/(1 − 2ν), k2 = k · k, and δi j is the Kronecker symbol.
Let us introduce the cylindrical coordinate system (k‖, ψ , kz) into the Fourier space

(figure A.2). The magnitudes k‖,ψ and kz are in the following relationships with the projections
k1, k2 and k3 of the vector kon the axes x1, x2 and x3, respectively: k1 = k‖ cosψ , k2 = k‖ sinψ ,
k3 = kz . k‖ is the magnitude of the vector k‖, which represents the projection of the vector
k onto the plane 0x1x2 and makes the angle ψ with the axis x1. Since the projection r of the
vector x on the same plane makes the angle ϕ with the axis x1, the angle between the vectors
k‖ and r is ±(ψ − ϕ). As a corollary, we have k · x = k‖r cos(ψ − ϕ) + kzz. With this
relationship, the Fourier image β̂∗

i j of the plastic distortion tensor β∗
i j is written as

β̂∗
i j =

∫ ∞

0
r dr

∫ 2π

0
dϕ

∫ ∞

−∞
dz β∗

i j e
−i(k‖r cos(ψ−ϕ)+kz z). (A.16)

Substitution of expressions for the tensor β∗
i j components into formula (A.16) yields

β̂∗
11 = β̂∗

1 + β̂∗
2 cos 2ψ, β̂∗

22 = β̂∗
1 − β̂∗

2 cos 2ψ, β̂∗
12 = β̂∗

21 = β̂∗
2 sin 2ψ, (A.17)

where

β̂∗
1 = ω0 R3

s

6
f1(k‖ Rs)

(
πδ(kz Rs) +

1

ikz Rs

)
, (A.18)

β̂∗
2 = ω0 R3

s

6
f2(k‖ Rs)

(
πδ(kz Rs) +

1

ikz Rs

)
, (A.19)

f1(k) = −2[k J1(k) + J2(k)]

k2
+ 21 F2(1/2; 1, 3/2; −k2/4), (A.20)

f2(k) = 2[k(J0(k)− 3) + (k2 + 4)J1(k)]

k3
+

k2

12
1 F2(3/2; 5/2, 3; −k2/4). (A.21)
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Figure A.2. Spatial positions of vectors k and x.

In formulae (A.20) and (A.21), Jm(x) are the Bessel functions of the mth order, and
1 F2(a1; b1, b2; t) are the generalized hypergeometric series given as [45]

1 F2(a1; b1, b2; t) = 
(b1)
(b2)


(a1)

∞∑
n=0


(a1 + n)


(b1 + n)
(b2 + n)

xn

n!
, (A.22)

with 
(x) being the gamma-function.
Thus, we have all the terms figuring in formula (A.13) for the Fourier image ûp(k) of the

displacement field created by the ensemble of continuously distributed dislocation–disclination
semiloops. This allows us to calculate the Fourier image σ̂ jl(k) of the elastic stress field created
by the ensemble in question. As follows from formulae (A.1) and (A.2),

σ jl = C jlmn(um,n − β∗
nm). (A.23)

As a corollary, we have

σ̂ jl = C jlmn(iknûm − β̂∗
nm). (A.24)

With (A.13)–(A.15) and (A.17)–(A.19) substituted into formula (A.24), we find

σ̂ j l = µω0 R3
s

3(λ + 2µ)k2

(
πδ(kz Rs) +

1

ikz Rs

) {
f1(k‖ Rs)

[
2(λ + µ)

(
k j kl(k2 + k2

z )

k2
− k2δ jl

)

− (λ + 2µ)(k3(k jδl3 + klδ j3)− k2δ j3δl3)− λk2
3δ jl

]

+ f2(k‖ Rs)

[
(λ + 2µ)(2k j kl − k3(k jδl3 + klδ j3)− k2((δ j1δl1 − δ j2δl2) cos 2ψ

+ (δ j1δl2 + δ j2δl1) sin 2ψ)) + λk2
‖δ jl − 2(λ + µ)k j klk2

‖
k2

]}
. (A.25)

The stress field σ jl in a real space is derived from σ̂ jl (given by formula (A.25)), using the
reverse Fourier transform, which in the cylindrical coordinates (k‖, ψ , kz) has the following
form:

σ jl = 1

(2π)3

∫ ∞

0
k‖ dk‖

∫ 2π

0
eik‖r cos(ψ−ϕ) dψ

∫ ∞

−∞
σ̂ jleikz z dkz. (A.26)

After integration in formula (A.26) and transformation of the expression for σ jl from the
Cartesian coordinate system (x1, x2, x3) into the cylindrical coordinate system (r , ϕ, z), we
come to the relation σ jl = σ∞

jl �(z̃) + σ ′
j l sgn z̃, where σ∞

jl and σ ′
jl are given by formulae (1)

and (2).
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